
Week 5 - Wednesday



 What did we talk about last time?
 Exam 1!

 Before that:
 Review

 Before that:
 Scheduling to minimize lateness
 Dijkstra's algorithm







 An anthropologist studying on the Island of Knights and 
Knaves is told that an astrologer and a sorcerer are waiting in a 
tower

 When he goes up into the tower, he sees two men in conical 
hats

 One hat is blue and the other is green
 The anthropologist cannot determine which man is which by 

sight, but he needs to find the sorcerer
 He asks, "Is the sorcerer a Knight?"
 The man in the blue hat answers, and the anthropologist is 

able to deduce which one is which
 Which one is the sorcerer?





 We have a weighted, connected graph and we want to 
remove as many edges as possible such that:
 The graph remains connected
 The edges we keep have the smallest total weight

 This is the minimum spanning tree (MST) problem
 We can imagine pruning down a communication network so 

that it's still connected but only with the cheapest amount of 
wire total

 MST algorithms are also used as subroutines in other graph 
problems



 Assuming positive edge weights, the resulting graph is 
obviously a tree
 If the graph wasn't connected, it wouldn't be a solution to our 

problem
 If there was a cycle, we could remove an edge, make it cheaper, and 

still have connectivity



 Kruskal's algorithm: Add edges to the MST in order of 
increasing cost unless it causes a cycle

 Prim's algorithm: Grow outward from a node, always adding 
the cheapest edge to a node that is not yet in the MST

 Backwards Kruskal's algorithm: Remove edges from the 
original graph in order of decreasing cost unless it disconnects 
the graph

 All three algorithms work!
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 Assume all edge weights are distinct.
 Let S be a subset of nodes that is neither empty nor equal to 

V.
 Let edge e = (v,w) be the minimum-cost edge with one end in 

S and the other in V – S.
 Every minimum spanning tree contains e.



 Let T be a spanning tree that does not contain e.  We will try 
to find an edge e' in T that is more expensive than e that we 
can swap with e to make a cheaper spanning tree.

 The ends of e are v and w.  Since T is a spanning tree, there 
must be a path P in T from v to w.  Following P, we will 
eventually reach a node w' that is in V – S. 

 Let v' ∈ S be the node just before w' on P.
 Let e' = (v', w') be the edge between v' and w'.



 If we exchange e for e', we get edges T' = (T – {e'}) ∪ {e}.
 T' is connected since T was connected and any path that used 

to cross (v', w') can follow the part of P from v' to v, the edge 
e, and then the part of P from w to w'.

 T' is acyclic since the only cycle in T'∪ {e'} is the one made up 
of e and path P, but it's gone since e' was deleted.

 Both e and e' have one end in S and the other in V – S, but e is 
the cheapest edge with this property, so its weight is lower.

 Thus, T' has lower cost than any spanning tree T that does not 
include e. ∎



 Proof: Whenever we add an edge e = (v, w), let S be the set of 
nodes that v has a path to before adding e.  Node v ∈ S. But w
∉ S, because e would otherwise create a cycle.  Since e is the 
cheapest edge with one end in S and the other in V – S, the 
Cut Property says it must be part of every minimum spanning 
tree.

 Thus, Kruskal's algorithm adds exactly those edges that must 
be part of every minimum spanning tree. ∎



 Assume that all edge costs are distinct.  Let C be any cycle in 
G, and let edge e = (v,w) be the most expensive edge in C.  
Then e does not belong to any minimum spanning tree of G.



 Let T be a spanning tree that contains e.  We can show that it 
doesn't have minimum cost.

 If we delete e from T, it partitions nodes into two 
components, S, containing v, and V – S, containing w.

 The edges of cycle C, with e removed, form a path P from v to 
w.  There must be some edge e' on P that crosses from S to V
– S.



 Consider the set of edges T' = (T – {e}) ∪ {e'}.
 T' must be connected and have no cycles; thus, T' is a 

spanning tree.
 Since e is the most expensive edge in C, e' is cheaper, and T' is 

cheaper than T. ∎



 Using the Cut Property, it's easy to show the correctness of 
Prim's algorithm

 Using the Cycle Property, it's easy to show the correctness of 
the Reverse Kruskal's algorithm

 It turns out that any algorithm that follows the Cut Property 
to add edges to a spanning tree or any algorithm that follows 
the Cycle Property to remove edges from a graph (or any 
combination of the two) will find an MST



 In all MST algorithms, if there is a choice between edges with the 
same cost, either can be chosen
 Provided that connectivity/cycle constraints are met

 A way to demonstrate this is to add tiny random amounts to the 
weights of all edges, much smaller than the difference between 
any non-equal cost edges

 These random changes serve as tie-breakers between edges of 
the same cost
 However, they will not change the structure so that larger edges would 

have been chosen





 Imagine you have a set of objects
 Photographs
 Documents
 Microorganisms

 You want to classify them into related groups
 Usually, you have some distance function that says how far 

away any two objects are
 You want to group together objects so that all the objects in a 

group are close



 The distance function is usually defined between all points
 If the points are in the plane or another Euclidean space, the distance 

could simply be the distance between them
 A more flexible way to define distance is as weights on graph edges 

in a complete graph
 The distance between a point and itself is 0
 The distance between any two distinct points is greater than 0
 The distance between two points is symmetrical



 What if you wanted to cluster these points into three clusters?
 What about 4?
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 What if we want to divide our objects into k non-empty sets:
 C1, C2,…, Ck

 The spacing of this k-clustering is the minimum distance 
between any pair of points in different clusters

 We want to find clusters with maximum spacing
 There are other metrics to optimize your clusters on



 We don't want to group together objects that are far apart
 We sort all of the edges by weight and begin adding them 

back to our graph in order
 If an edge connects nodes that are already in the same cluster, 

we skip it
 Thus, we don't make cycles

 We stop when we have k connected components



 This algorithm is exactly Kruskal's algorithm
 Add edges by increasing size, skipping ones that make a cycle

 We simply stop when we have k connected components 
instead of connecting everything
 Alternatively, you can make the MST and delete the k – 1 most 

expensive edges



 Proof:
 Let our clustering be sets C1, C2,…, Ck.  The spacing of this clustering 

is d*, the (k – 1)st most expensive edge in the MST, the edge that 
Kruskal's algorithm would have added next.
 Consider some other clustering C'

1, C'
2,…, C'

k that is not the same.  
One of our sets Cr must not be a subset of any set in C'

1, C'
2,…, C'

k.  
Thus, there must be points pi and pj in Cr that are in different sets in 
the other clustering.  Let pi ∈ C'

s and pj ∈C'
t ≠ C'

s.



 Since pi and pj belong to the same component Cr, Kruskal's
algorithm added all the edges in a pi-pj path P before it 
stopped.

 Thus, every edge on P is d* or smaller.
 Let p' be the first node on P that does not belong to C'

s and let 
p be the node on P that comes just before p'.  We know that 
d(p,p') ≤d*.  But p and p' are different sets in the clustering C'

1, 
C'

2,…, C'
k, so that clustering must have spacing at most d*.

 Since any other clustering must have spacing at most d*, the 
clustering C1, C2,…, Ck has maximum spacing. ∎





 Data compression



 Start on Assignment 3
 Read section 4.8
 Extra credit opportunities (0.5% each):
 Rublein research talk: 2/9 12:30-1:30 p.m. in Point 140
 Rublein teaching demo: 2/9 3-4 p.m. in Point 140
 Phadke research talk: 2/12 3-4 p.m. in Point 139
 Phadke teaching demo: 2/13 10-10:55 a.m. in Towers 112
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139
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