
Week 5 - Wednesday

 What did we talk about last time?
 Exam 1!

 Before that:
 Review

 Before that:
 Scheduling to minimize lateness
 Dijkstra's algorithm

 An anthropologist studying on the Island of Knights and
Knaves is told that an astrologer and a sorcerer are waiting in a
tower

 When he goes up into the tower, he sees two men in conical
hats

 One hat is blue and the other is green
 The anthropologist cannot determine which man is which by

sight, but he needs to find the sorcerer
 He asks, "Is the sorcerer a Knight?"
 The man in the blue hat answers, and the anthropologist is

able to deduce which one is which
 Which one is the sorcerer?

 We have a weighted, connected graph and we want to
remove as many edges as possible such that:
 The graph remains connected
 The edges we keep have the smallest total weight

 This is the minimum spanning tree (MST) problem
 We can imagine pruning down a communication network so

that it's still connected but only with the cheapest amount of
wire total

 MST algorithms are also used as subroutines in other graph
problems

 Assuming positive edge weights, the resulting graph is
obviously a tree
 If the graph wasn't connected, it wouldn't be a solution to our

problem
 If there was a cycle, we could remove an edge, make it cheaper, and

still have connectivity

 Kruskal's algorithm: Add edges to the MST in order of
increasing cost unless it causes a cycle

 Prim's algorithm: Grow outward from a node, always adding
the cheapest edge to a node that is not yet in the MST

 Backwards Kruskal's algorithm: Remove edges from the
original graph in order of decreasing cost unless it disconnects
the graph

 All three algorithms work!

A

L

I

F

B

E

G

C

J

H

K

D

5

3

11

6

5

1

4

3

8

5

12

9

2

7

1
95

4

10

2
4

1

 Assume all edge weights are distinct.
 Let S be a subset of nodes that is neither empty nor equal to

V.
 Let edge e = (v,w) be the minimum-cost edge with one end in

S and the other in V – S.
 Every minimum spanning tree contains e.

 Let T be a spanning tree that does not contain e. We will try
to find an edge e' in T that is more expensive than e that we
can swap with e to make a cheaper spanning tree.

 The ends of e are v and w. Since T is a spanning tree, there
must be a path P in T from v to w. Following P, we will
eventually reach a node w' that is in V – S.

 Let v' ∈ S be the node just before w' on P.
 Let e' = (v', w') be the edge between v' and w'.

 If we exchange e for e', we get edges T' = (T – {e'}) ∪ {e}.
 T' is connected since T was connected and any path that used

to cross (v', w') can follow the part of P from v' to v, the edge
e, and then the part of P from w to w'.

 T' is acyclic since the only cycle in T'∪ {e'} is the one made up
of e and path P, but it's gone since e' was deleted.

 Both e and e' have one end in S and the other in V – S, but e is
the cheapest edge with this property, so its weight is lower.

 Thus, T' has lower cost than any spanning tree T that does not
include e. ∎

 Proof: Whenever we add an edge e = (v, w), let S be the set of
nodes that v has a path to before adding e. Node v ∈ S. But w
∉ S, because e would otherwise create a cycle. Since e is the
cheapest edge with one end in S and the other in V – S, the
Cut Property says it must be part of every minimum spanning
tree.

 Thus, Kruskal's algorithm adds exactly those edges that must
be part of every minimum spanning tree. ∎

 Assume that all edge costs are distinct. Let C be any cycle in
G, and let edge e = (v,w) be the most expensive edge in C.
Then e does not belong to any minimum spanning tree of G.

 Let T be a spanning tree that contains e. We can show that it
doesn't have minimum cost.

 If we delete e from T, it partitions nodes into two
components, S, containing v, and V – S, containing w.

 The edges of cycle C, with e removed, form a path P from v to
w. There must be some edge e' on P that crosses from S to V
– S.

 Consider the set of edges T' = (T – {e}) ∪ {e'}.
 T' must be connected and have no cycles; thus, T' is a

spanning tree.
 Since e is the most expensive edge in C, e' is cheaper, and T' is

cheaper than T. ∎

 Using the Cut Property, it's easy to show the correctness of
Prim's algorithm

 Using the Cycle Property, it's easy to show the correctness of
the Reverse Kruskal's algorithm

 It turns out that any algorithm that follows the Cut Property
to add edges to a spanning tree or any algorithm that follows
the Cycle Property to remove edges from a graph (or any
combination of the two) will find an MST

 In all MST algorithms, if there is a choice between edges with the
same cost, either can be chosen
 Provided that connectivity/cycle constraints are met

 A way to demonstrate this is to add tiny random amounts to the
weights of all edges, much smaller than the difference between
any non-equal cost edges

 These random changes serve as tie-breakers between edges of
the same cost
 However, they will not change the structure so that larger edges would

have been chosen

 Imagine you have a set of objects
 Photographs
 Documents
 Microorganisms

 You want to classify them into related groups
 Usually, you have some distance function that says how far

away any two objects are
 You want to group together objects so that all the objects in a

group are close

 The distance function is usually defined between all points
 If the points are in the plane or another Euclidean space, the distance

could simply be the distance between them
 A more flexible way to define distance is as weights on graph edges

in a complete graph
 The distance between a point and itself is 0
 The distance between any two distinct points is greater than 0
 The distance between two points is symmetrical

 What if you wanted to cluster these points into three clusters?
 What about 4?

H

K

D

I
G

A

E

C

B

J

F

 What if we want to divide our objects into k non-empty sets:
 C1, C2,…, Ck

 The spacing of this k-clustering is the minimum distance
between any pair of points in different clusters

 We want to find clusters with maximum spacing
 There are other metrics to optimize your clusters on

 We don't want to group together objects that are far apart
 We sort all of the edges by weight and begin adding them

back to our graph in order
 If an edge connects nodes that are already in the same cluster,

we skip it
 Thus, we don't make cycles

 We stop when we have k connected components

 This algorithm is exactly Kruskal's algorithm
 Add edges by increasing size, skipping ones that make a cycle

 We simply stop when we have k connected components
instead of connecting everything
 Alternatively, you can make the MST and delete the k – 1 most

expensive edges

 Proof:
 Let our clustering be sets C1, C2,…, Ck. The spacing of this clustering

is d*, the (k – 1)st most expensive edge in the MST, the edge that
Kruskal's algorithm would have added next.
 Consider some other clustering C'

1, C'
2,…, C'

k that is not the same.
One of our sets Cr must not be a subset of any set in C'

1, C'
2,…, C'

k.
Thus, there must be points pi and pj in Cr that are in different sets in
the other clustering. Let pi ∈ C'

s and pj ∈C'
t ≠ C'

s.

 Since pi and pj belong to the same component Cr, Kruskal's
algorithm added all the edges in a pi-pj path P before it
stopped.

 Thus, every edge on P is d* or smaller.
 Let p' be the first node on P that does not belong to C'

s and let
p be the node on P that comes just before p'. We know that
d(p,p') ≤d*. But p and p' are different sets in the clustering C'

1,
C'

2,…, C'
k, so that clustering must have spacing at most d*.

 Since any other clustering must have spacing at most d*, the
clustering C1, C2,…, Ck has maximum spacing. ∎

 Data compression

 Start on Assignment 3
 Read section 4.8
 Extra credit opportunities (0.5% each):
 Rublein research talk: 2/9 12:30-1:30 p.m. in Point 140
 Rublein teaching demo: 2/9 3-4 p.m. in Point 140
 Phadke research talk: 2/12 3-4 p.m. in Point 139
 Phadke teaching demo: 2/13 10-10:55 a.m. in Towers 112
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup
	Minimum Spanning Trees
	Minimum spanning tree
	MST observations
	Approaches
	MST example
	Cut Property
	Proof of Cut Property
	Proof continued
	Kruskal's algorithm produces an MST
	Cycle Property
	Proof of Cycle Property
	Proof continued
	MST reflections
	What about when some edges have the same cost?
	Clustering
	Clustering
	Notes about distance
	Clustering
	Clustering by maximum spacing
	Algorithm
	MST saves the day
	We get a k-clustering of maximum spacing
	Proof continued
	Upcoming
	Next time…
	Reminders

